Результаты испытаний на абразивную износостойкость по корунду, когда основным механизмом изнашивания всех исследуемых сталей является микрорезание, показали, что износостойкость линейно возрастает при увеличении содержания углерода в мартенсите до 0,9%.
При испытании по более мягкому абразиву – кремню пропорциональная зависимость износостойкости от концентрации углерода характерна только для низко- и среднеуглеродистого (до 0,5% С) мартенсита.
Отсутствие строгой пропорциональной зависимости между твердостью и абразивной износостойкостью
углеродистого мартенсита обусловлено увеличением способности мартенсита к деформационному упрочнению при повышении содержания в нем углерода более 0,5% вследствие активизации в высокоуглеродистом мартенсите при изнашивании процессов деформационного динамического старения.
Сущность деформационного динамического старения мартенсита состоит в том, что возникающие при пластической деформации дислокации активно взаимодействуют с атомами углерода, находящимися в октаэдрических порах кристаллической решетки мартенсита. В результате этого взаимодействия атомы
углерода перемещаются к дислокациям, образуя сегрегации. Высокая энергия взаимодействия дислокаций с сегрегациями из атомов углерода обусловливает сильное закрепление дислокаций и, соответственно, интенсивное деформационное упрочнение мартенсита.
Проведенный в ходе исследования рентгеноструктурный анализ поверхностей углеродистых сталей, как в исходном состоянии, так и после изнашивания в различных условиях показал, что абразивное воздействие приводит к резкому уменьшению ширины линии мартенсита. У высокоуглеродистых сталей при абразивном воздействии наблюдается исчезновение дублета линии.
Результаты испытаний при фрикционном воздействии твердосплавным индентором в безокислительной среде азота (при 20 и –196°С) и на воздухе показали, что рост концентрации углерода в сталях до 0,83% массы вызывает повышение износостойкости (снижение потери веса) при трении скольжения. Это связано с увеличением прочности мартенситной структуры, обусловливающим смену основного механизма изнашивания – от адгезионного к полидеформационному. Дальнейший рост содержания углерода в сталях до 1,35% массы сопровождается некоторым снижением износостойкости (увеличением потери веса) вследствие повышения хрупкости мартенситной структуры.
Уменьшение температуры испытаний в азоте от комнатной до –196°С вызывает ускоренный износ закаленных и низкоотпущенных высокоуглеродистых сталей, инициированный их низкотемпературным охрупчиванием, и, напротив, приводит к снижению интенсивности адгезионного изнашивания менее прочной стали 35 вследствие ее низкотемпературного упрочнения.
При трении на воздухе интенсивность изнашивания стали 35 резко снижается по сравнению с трением в безокислительной среде азота, поскольку образующиеся при фрикционном воздействии на воздухе окислы препятствуют адгезионному взаимодействию контактирующих металлических поверхностей. С другой стороны, фрикционное окисление приводит к охрупчиванию и, соответственно, снижению сопротивления усталостному изнашиванию поверхности высокоуглеродистых сталей. Охрупчивание деформированного поверхностного слоя сталей в результате его взаимодействия с кислородом связано с образованием хрупких пересыщенных твердых растворов кислорода в железе, а также с формированием преимущественно по границам растущих микротрещин окислов, способствующих ускоренному развитию трещин. Отпуск при 200ºC приводит к уменьшению сопротивления закаленных углеродистых сталей изнашиванию.
Анализ трибологических свойств и деформационного упрочнения при фрикционном нагружении твердосплавным индентором закаленных и отпущенных при 200°С углеродистых сталей показал, что микротвердость поверхностей изнашивания углеродистых сталей при трении скольжения с большими
контактными нагрузками возрастает по мере увеличения содержания углерода от ∼10 ГПа у стали 35 до 12,0–12,5 ГПа у сталей У8, У10 и У13.
Одним из методов защиты поверхности изделий из стали является гальванотехника, которая представляет собой электрохимический метод нанесения на них металлических и химических покрытий для придания им определенных свойств: защитных антикоррозийных, защитно-декоративных, декоративных, а также специальных: антифрикционных, для придания твердости, износостойкости.
Оцинкование, которое возможно как в барабанных вращательных установках, так и на подвесках разными методами. Метод горячего оцинкования – это самый прогрессивный, надежный, высокоэффективный способ защиты от различных видов коррозии. Оцинковка в виде оболочки является защитным барьером, сводящим до минимума действие окружающей среды, а также устойчивым на механические воздействия. Оцинкование также обеспечивает электрохимическую защиту, так как при соприкосновении со сталью создает гальванический элемент.
Хромирование, одно из самых нужных покрытий, относится к наиболее трудоемким процессам гальванотехники. Хромирование – электролитическое нанесение покрытия из хрома на поверхность металлического изделия для предотвращения коррозии, повышения сопротивления механическому износу и придания декоративного вида.
Никелирование, нанесение на поверхность изделий никелевого покрытия толщиной, как правило, от 1÷2 до 40÷50 мкм. Никелированию подвергаются преимущественно изделия из стали и сплавов. Никелирование применяется для защиты изделий от коррозии (в атмосферных условиях, в растворах щёлочей, солей и слабых органических кислот), повышения износостойкости деталей, а также в защитно-декоративных целях.
Однако физико-механические свойства изделий с толстым слоем покрытия изменяются, и при различных механических операциях (гибка, вальцовка и др.), производимых с ними, покрытие скалывается с их поверхности в виде отдельных чешуек и пыли, что снижает их срок службы и ухудшает условия эксплуатации в рабочей зоне.
20 Января 2012
Кол-во просмотров: 12250
Какова износостойкость материала на поверхности углеродистой стали? Возможно ли в дальнейшем применять к стали с нанесенной пленкой механические воздействия: изгиб, кручение?
Другие статьи по теме
20.01.2012
Слышал, что для обеспечения супер скольжения снеговой шапки на карнизе во время образования сосулек, есть жидкости, которые наносят по краю крыши вдоль карниза шириной зоны до 1 метра. Если можете, поясните, что это за жидкости?




